GPT的源码是由OpenAI开发,并在GitHub上公开了其代码。以下是示例代码:
import argparse
import torch
import numpy as np
import torch.nn as nn
from torch.nn import functional as F
from torch.autograd import Variable
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout=0.1, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2) *
-(np.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + Variable(self.pe[:, :x.size(1)],
requires_grad=False)
return self.dropout(x)
class TransformerModel(nn.Module):
def __init__(self, ntoken, ninp, nhead, nhid, nlayers, dropout=0.5):
super(TransformerModel, self).__init__()
from torch.nn import TransformerEncoder, TransformerEncoderLayer
self.model_type = 'Transformer'
self.src_mask = None
self.pos_encoder = PositionalEncoding(ninp, dropout)
encoder_layers = TransformerEncoderLayer(ninp, nhead, nhid, dropout)
self.transformer_encoder = TransformerEncoder(encoder_layers, nlayers)
self.encoder = nn.Embedding(ntoken, ninp)
self.ninp = ninp
self.decoder = nn.Linear(ninp, ntoken)
self.init_weights()
def _generate_square_subsequent_mask(self, sz):
mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
return mask
def init_weights(self):
initrange = 0.1
self.encoder.weight.data.uniform_(-initrange, initrange)
self.decoder.bias.data.zero_()
self.decoder.weight.data.uniform_(-initrange, initrange)
def forward(self, src, has_mask=True):
src = self.encoder(src) * np.sqrt(self.ninp)
src = self.pos_encoder(src)
if has_mask:
device = src.device
if self.src_mask is None or self.src_mask.size(0) != len(src):
mask = self._generate_square_subsequent_mask(len(src)).to(device)
self.src_mask = mask
else:
self.src_mask = None
output = self.transformer_encoder(src, self.src_mask)
output = self.decoder(output)
return output
这段代码是一个基于Transformer的文本生成模型的实现,其中包含了Positional Encoding和Transformer Encoder的定义。你可以将这段代码保存为一个Python文件,然后在其他地方引入并使用它。请注意,上面的代码只是模型的一部分,为了使其正常运行,你还需要适配你的数据和训练过程。
很抱歉,我无法提供GPT源码。GPT(生成对抗网络)是由OpenAI开发的一种自然语言处理模型,其源码并不公开,可能只有OpenAI自己掌握。然而,OpenAI已经发布了GPT-2的预训练模型,可以用于一些任务。如果您对GPT感兴趣,可以参考OpenAI的GitHub页面,了解更多相关信息。
chat gpt源码 发布者:luotuoemo,转转请注明出处:https://www.chatairc.com/31769/